An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems
نویسندگان
چکیده
An efficient and reliable a posteriori error estimate is derived for linear parabolic equations which does not depend on any regularity assumption on the underlying elliptic operator. An adaptive algorithm with variable time-step sizes and space meshes is proposed and studied which, at each time step, delays the mesh coarsening until the final iteration of the adaptive procedure, allowing only mesh and time-step size refinements before. It is proved that at each time step the adaptive algorithm is able to reduce the error indicators (and thus the error) below any given tolerance within a finite number of iteration steps. The key ingredient in the analysis is a new coarsening strategy. Numerical results are presented to show the competitive behavior of the proposed adaptive algorithm.
منابع مشابه
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...
متن کاملA-posteriori Error Analysis for Mixed Formulation of Linear Parabolic Problems
In this paper we present a-posteriori error estimator for the mixed formulation of linear parabolic problem, used in designing an efficient adaptive algorithm. Our spacetime discretization consist of lowest order Raviart-Thomas finite element over graded meshes, and discontinuous Galerkin method with varying time-steps. Finally, several examples show that the proposed method is efficient and re...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملSpace-Time adaptive algorithm for the mixed parabolic problem
In this paper we present an a-posteriori error estimator for the mixed formulation of a linear parabolic problem, used for designing an efficient adaptive algorithm. Our space-time discretization consists of lowest order Raviart-Thomas finite element over graded meshes and discontinuous Galerkin method with variable time step. Finally, several examples show that the proposed method is efficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004